# **GSR4B**

# Biomass Map Super-Resolution with Sentinel-1/2 Guidance

Kaan Karaman , Yuchang Jiang, Damien Robert, Vivien S. F. Garnot, Maria J. Santos, Jan D. Wegner







## What is Above-Ground Biomass?

## **Definition of AGB:**

Total carbon amount (in Mg) per area (in ha)

that exists on the ground.



# Why do we need biomass?

## **Applications:**

- Monitoring Carbon Cycle / Climate Modeling
- Sustainable Supply Chain
- Timber Industry
- Better Understanding Ecology

#### **Ideal biomass product:**

• Having high-resolution & global biomass map.



# How do we measure/estimate biomass?

Accuracy: **() ()** 

Cost: 10 10 10 10

Scalability:

#### \* In-Situ Methods:



1. Destructive Measurements



3. Airborne Platforms



2. Using Allometric Equation



# **Our Goal:** Mapping Biomass Globally

### **Potential Data:**

- 1. ESA Sentinel Mission:
  - Covering the Whole Globe
  - High Spatial & Temporal Resolution (10-meter, 6 days)
- 2. ESA Climate Change Initiative (CCI):
  - Covering the Whole Globe
  - Lower Spatial & Temporal Resolution (100-meter, yearly)

#### **Active Field of Research:**

• From Sentinel-1/2 to high-resolution biomass estimation







Image Source: ESA Website

## How can we frame the problem?

## **Drawbacks:**

#### **1. Regression Analysis:**



#### • Domain Gap

#### **2. Super-Resolution:**



Lack of High
 Frequency Info

# **Combining** the Input Information

#### **3. Guided Super-Resolution:**



# **Guided Super-Resolution** in Literature

## **Original Setting of GSR:**

- Targeted problem: Depth Estimation
- Inputs: HR RGB Image + LR Depth Map Guid
- Output: HR Depth Map

## **Challenges:**

- Texture Copying
- Over-Smoothing





Guide Image

Source Map



Target Map

Image Sources: Mathworks, DADA

## Dataset Selection: **BioMassters** (NeurIPS 23)

• A recent open-source dataset.



- Study area is Finland. 📕
- The inputs are **S1 & S2 images** per month.
- Target biomass maps are from LiDAR imagery.
- Provides high-resolution biomass maps. (10x10 meter)
- Does not provide geolocation information for each tile.







Guide Image

Target Map

Image Source: All the figures from the white paper of BioMassters.

# **Benchmarks** for Biomass



## **Regression Models:**

- UNet
- ResNeXt



## **Super-Resolution Models:**

- Standard Interpolation Methods
- Deep-Learning Based Models



## **Guided Super-Resolution Models:**

- Heuristic Models
- Basic Deep-Learning Based Models
- More Complex DL Models

# **Quantitative Results**









# **Quantitative Results**

## What do we expect?

More Advanced Model  $\Rightarrow$  Better Performance

## What do we have?

The simplest GSR model is the best performing approach.



Image Source: <u>The Star</u>

|                                                                              | $MAE_{\downarrow}$ $t/px$               | $\begin{array}{c} \text{RMSE}_{\downarrow} \\ t/px \end{array}$ | $\mathrm{TP}^{\dagger}_{\uparrow}$<br>Mpix/s |
|------------------------------------------------------------------------------|-----------------------------------------|-----------------------------------------------------------------|----------------------------------------------|
| GSR★                                                                         |                                         |                                                                 |                                              |
| Basic DL Model<br>Complex DL Model<br>Unsupervised DL Mod<br>Heuristic Model | <b>16.2</b><br>18.4<br>del 26.6<br>25.3 | <b>29.8</b><br>33.4<br>46.3<br>42.6                             | 53.2<br>240.8<br>0.3<br>0.9                  |
| SR <sup>♣</sup>                                                              |                                         |                                                                 |                                              |
| MSG <sup>ng</sup><br>Nearest<br>Bilinear<br>Bicubic                          | 21.5<br>25.3<br>25.3<br>24.0            | 37.8<br>42.6<br>41.1<br>39.5                                    | 116.8<br><b>262 K</b><br>82 K<br>37 K        |
| BE♠                                                                          |                                         |                                                                 |                                              |
| U-Net<br>ResNeXt                                                             | 21.9<br>22.5                            | 37.6<br>39.0                                                    | 19.0<br>0.8                                  |



# **Qualitative Analysis**



#### **Comments:**

- Bicubic has no high frequency info.
- UNet has no low-resolution values.
- Simple Model (MSG) works better.

## **MSG** is **Better** on **Underestimation Problem**



## **Comparisons:**

- UNet vs GSR
- MSG vs Other GSR

# **Our Findings**

• Guided Super-Resolution reaches better performance on the biomass data.

• Texture-copying is indeed beneficial for biomass estimation.

## References

For Icons & Images:

• Flaticon, Wikipedia, Reddit

For Models:

- Hui, T.-W., Loy, C. C., Tang, X., 2016. Depth map super-resolution by deep multi-scale guidance. ECCV.
- Kopf, J., Cohen, M. F., Lischinski, D., Uyttendaele, M., 2007. Joint bilateral upsampling. ACM ToG.
- Lutio, R. D., D'aronco, S., Wegner, J. D., Schindler, K., 2019. Guided super-resolution as pixel-to-pixel transformation. ICCV.
- He, L., Zhu, H., Li, F., Bai, H., Cong, R., Zhang, C., Lin, C., Liu, M., Zhao, Y., 2021. Towards fast and accurate real-world depth super-resolution: Benchmark dataset and baseline. CVPR.
- Garnot, V. S. F., Landrieu, L., 2021. Panoptic segmentation of satellite image time series with convolutional temporal attention networks. ICCV.
- Becker, A., Russo, S., Puliti, S., Lang, N., Schindler, K., Wegner, J. D., 2023. Country-wide retrieval of forest structure from optical and SAR satellite imagery with deep ensembles. ISPRS Journal of Photogrammetry and Remote Sensing.

# Take away message: Guided Super-Resolution is beneficial for global-scale biomass estimation!



Thank you for Listening!